2023-08-01 11:20:29 来源:商业新知网
智能时代的三要素:
数据、算法和算力
(相关资料图)
近几年,人工智能技术和应用飞速发展,在我们生活和工作中都得到大量的普及应用,归功于推动人工智能发展的三大要素:数据、算法和算力。这三个要素缺一不可,相互促进、相互支撑,是智能技术创造价值和取得成功的必备条件。
数据
在人类发明史上,很多发明都是从模仿动物开始的,比如,模仿鸟类来实现人类的飞行梦想。历史上记载有各种关于模仿鸟类飞行的故事,当然,结果是可想而知的,肯定都以失败告终。我们把使用这种方法论的人统称为“飞鸟派”。
早期研究人工智能的基本上都是“飞鸟派”,因为他们认为计算机要获得智能必须模仿人的思维模式。比如说当时的语音识别研究,几乎所有的专家都把精力投入到教会计算机理解人类的语言上,研究也是进展缓慢。
上世纪70年代初,美国康奈尔大学贾里尼克教授在做语音识别研究时另辟蹊径,换了个角度思考问题:他将大量的数据输入计算机里,让计算机进行快速的匹配,通过大数据来提高语音识别率。于是复杂的智能问题转换成了简单的统计问题,处理统计数据正是计算机的强项。
从此,学术界开始意识到,让计算机获得智能的钥匙其实是大数据。
数据对于人工智能,就如食材对于美味菜肴,人工智能的智能都蕴含在大数据中。因为人工智能的根基是训练,就如同人类如果要获取一定的技能,必须经过不断地训练才能获得,而且有“熟能生巧、巧能生仙”之说。
人工智能也是如此。只有经过大量的训练,才能总结出规律,应用到新的样本上。如果现实中出现了训练集中从未有过的场景,人工智能则会基本处于瞎猜状态,正确率可想而知。对于人工智能而言,大量的数据太重要了,而且需要覆盖各种可能的场景,这样才能得到一个表现得更智能的模型。
当前的时代,无时无刻不在产生大数据。人手一部的手机、无处不在的摄像头和传感器等设备都在产生和积累着数据,这些数据形式多样化,大部分都是非结构化数据。
这些大数据需要进行大量的预处理过程(特征化、标量化、向量化),处理后的数据才能为人工智能算法所用。
算 法
传统的对象识别模式是由研究人员事先将对象抽象成一个模型,再用算法把模型表达出来并输入计算机。这种人工抽象的方法具有非常大的局限性,识别率也很低。
幸运的是,科学家从婴儿身上得到了启发。没有人教过婴儿怎么“看”,都是孩子自己从真实世界自学的。如果把孩子的眼睛当作是一台生物照相机的话,那这台相机平均每200毫秒就拍一张照——这是眼球转动一次的平均时间。到孩子3岁的时候,这台生物相机已经拍摄过上亿张真实世界照片。
这给科学家很好的启发:能不能给计算机看非常非常多猫的图片,让计算机自己抽象出猫的特征,自己去理解什么是猫。
这种方法被称为机器学习。谷歌就采用这种机器学习方法开发出了猫脸识别系统,而且准确度非常高。
机器学习除了在对象识别领域外,在其他领域也得到了广泛使用,并取得了令人刮目相看的诸多成果。在机器学习算法的推动下,搜索引擎、语音识别、自然语言处理、图像识别、推荐系统、专家系统和无人驾驶等领域取得了长足进步,机器智能水平有了极大的提升。
当前,机器学习算法是主流算法,是一类从数据分析中获得规律,并利用规律对未知数据进行预测的算法。机器学习算法主要分为传统的机器学习算法和神经网络算法,神经网络算法快速发展,其中最热门的分支当属深度学习,近年来深度学习的发展达到了高潮。
算法对于人工智能,就是厨师(烹饪的方法)与美味菜肴的关系。算法是实现人工智能的根本途径,是挖掘数据智能的有效方法。
算力
算力也就是计算能力,算力对于人工智能,如同厨房的煤气/电力/柴火对于美味佳肴一样。有了大数据和算法之后,需要进行训练,不断地训练,算力为人工智能提供了基本的计算能力的支撑,本质是一种基础设施的支撑。
AI中有一个术语叫Epoch,一个Epoch就是所有训练样本在神经网络中都进行一次正向传播和一次反向传播,再通俗一点,一个Epoch就是将所有训练样本训练一次的过程。
只把训练集从头到尾训练一遍神经网络是学不好的,而是要将完整的数据集在同样的神经网络中传递多次,把训练集翻过来、调过去训练多少轮。就像和小孩讲一个道理,一遍肯定学不会,必须一遍一遍反复地教,一遍就会那就是神童了。
有了大数据和先进的算法,还得有处理大数据和执行先进算法的计算能力。每个智能系统背后都有一套强大的硬件或者软件计算系统。
超级计算机是一个国家科技发展水平和综合国力的反映。没有超级计算机,天气预报不可能预报15天,中国的大飞机研制不可能进展如此之快。另外,核武器的爆炸模拟、地震预警、抗击新冠肺炎药物研发等领域也离不开超级计算机。
目前世界运算速度排第三位的超级计算机是中国的神威太湖之光,峰值性能达每秒12.5亿亿次,运算速度相当于普通家用电脑的200万倍,神威太湖之光一分钟的运算量需要全球72亿人用计算器不间断运算32年。
人工智能的发展对算力提出了更高的要求。除了训练,人工智能算法实际需要运行在硬件上,也需要推理,这些都需要算力的支撑。然而,能提供超强计算能力的超级计算机,价格也是超级昂贵,不是一般人都能使用得到的。
目前的人工智能算力主要是由专有的AI硬件芯片,以及提供超级计算能力的公有云计算服务来提供。其中GPU领先其他芯片,在人工智能领域中用得最广泛,GPU有更高的并行度、更高的单机计算峰值、更高的计算效率。
一般来说,GPU浮点计算的能力是CPU的10倍左右。另外,深度学习加速框架通过在GPU之上进行优化,再次提升了GPU的计算性能,有利于加速神经网络的计算。
云计算是计算能力的放大器。云计算是一种基于互联网的分布式超级计算模式。在远程的数据中心里,成千上万台服务器等计算设备连接起来组成一个云,协同计算。云中的单个计算机性能可能非常一般,甚至就是普通电脑,但是很多一般加在一起的计算能力却不容小觑。
将GPU和FPGA的计算能力部署在云端对外提供云服务意味着优势的进一步放大。云计算甚至可以让你体验每秒10万亿次的运算速度,计算能力堪比超级计算机。俗话说得好,三个臭皮匠顶个诸葛亮、聚沙成塔、集腋成裘。
当前,随着人工智能算法模型的复杂度和精度愈来愈高,互联网和物联网产生的数据呈几何倍数增长,在数据规模和算法模型的双层叠加下,人工智能对算力的需求越来越大。
毫无疑问,人工智能走向深度学习,计算力已成为评价人工智能研究成本的重要指标。可以说,计算力即是生产力。
从智能时代的三个要素来看,我们也可以进一步解析出云计算、大数据和人工智能之间的关系。为了简化和帮助理解,以炒菜这个应用场景为例来说明它们之间的关系:
大数据相当于炒菜需要的食材,也就是生产原料。云计算等算力就相当于炒菜需要的煤气/电力/柴火,人工智能算法就相当于烹饪的方法,算法和算力也就是产生动力的生产引擎。有了生产原料和生产引擎,就可以在不同的应用场景下生产出我们所需要的不同东西。
2006年Hinton教授等人提出了深度学习算法,实现了人工智能算法理论的创新突破;随着移动互联网的生活化普及,促进了AI发展的“大数据”产生;大数据和深度学习等算法的双剑合璧,再配合摩尔定律下的算力快速提升——大数据、算力、算法作为输入,从技术角度推动了人工智能的发展。只有在实际的场景中进行输出,才能体现出人工智能的实际价值。
人工智能的常见应用场景包括:自动驾驶、虚拟助理、金融服务、医疗和诊断、设计和艺术创作、合同诉讼等法律实务、社交陪伴、服务业和工业。应用场景的不同决定了人工智能的应用落地和效果。同样是物流分拣中心,规模不同、信息化基础不同、企业数据不同、人员素质不同,对人工智能的要求和所发挥的效益也自然不同了。
人工智能发展到如今还是一个被大数据喂养起来的小怪兽,而且在深度学习算法没有明显突破的情况下,人工智能实现自我学习能力看起来还遥遥无期。因此,AI对人类的替代性以及威胁,还远没有达到让人类担忧的地步,当前大家探讨最多的还是人工智能在各个领域的应用。
(作者史爱武系中国电子学会云计算专家委员会委员,中国通信学会云计算专家委员会委员,教育部战略研究中心云计算首席科学家,武汉纺织大学云计算与大数据研究中心主任)
世界上唯一不变的就是变化本身,这句话在套用在风控身上非常适用。风控跟业务是紧密联系在一起的,而业务是不断变化的,这就决定了风控模式要主动去适应和追赶业务模式的变化。就像4G来临之前人们很难预测到会有短视频、直播等应用的出现,随着5G的大范围商用,在可预见的几年内,一些全新的业态将会出现,甚至一些业态将会超越当下人们的思维框架,风控体系业务模式、业务场景的发展将变得难以预测。我们尝试着从过去的经验来谈谈5G时代可能会给风控带来的挑战。如果将现有的风控体系简化成一个抽象的公式,大概是这样的。
数据 + 算法 + 算力 = 决策
狭义地讲,有更多的数据、更适应的算法、更强大的算力,就能做出更精准的风控决策。当然在实际应用层面,情况要复杂得多,往往需要多个机构和系统进行跨维度、成体系的综合协同。比如通过可信数据体系的建设,缓解算力的负担,并提升用户体验;通过联邦学习等前沿算法的研发,解决部分数据获取的敏感和隐私问题;通过建立一套正反馈的决策流程,帮助算法和模型自动化迭代提升等。随着5G时代的到来,信息的获取和传递的速度会更加迅猛,相应的风险的传递和感染也将进入前所未有的不确定期。在数据、算法、算力三个维度,5G都会给传统的风控体系带来新的挑战。
一
数据——数据滥用和隐私保护问题严峻
1.新型数据的处理
5G时代全世界的数据量会产生指数级增长,而且这些数据大部分将会在新的物联网场景下诞生,比如智能设备、智能制造、智能家居、智慧金融、智慧交通、智慧城市等领域,如何更好发挥这些替代数据的价值之外,数据滥用和隐私保护的问题会成为各界更为关注的议题。
2.可信的端环境
可以预见的是,5G时代绝大部信息的交互都将在云上完成,除了云端的数据分析,对客户端的风险识别也很重视。没有端安全,只做云分析的风控就是空中楼阁。
回顾互联网和计算机的发展历史,可以发现一条清晰的脉络,即计算、存储、网络能力不断拆分为更细的粒度,比如从大型主机、小型机、pc服务器、虚拟机、容器和微服务,再到现在的serverless。
5G时代这条规律依然适用,未来瘦客户端+云计算的组合模式可能性是比较大的。在瘦客户端的环境下如何解决端的安全,现有的风控体系如何跟5G原生的安全机制相结合等问题会显得异常重要。
二
算法——算法自动化奇点来临
性能考验是算法首当其冲的挑战,更深层次来讲,算法本身的安全问题其实更值得警惕。风控决策很多时候就依赖于几个核心模型并行得到的结果,换言之模型能力就是风控能力,算法安全就是线上服务安全。攻击者当然也深谙此道,近年来一些针对AI模型的特定攻击方式频繁发生,例如:数据污染、投毒、药饵、模型恶意代码、模型窃取、模型逃逸、拒绝服务等等。
在5G时代,将会催生出更多算法,当下机器学习与深度学习的无监督训练算法可能是迈出了算法自动化的一小步,在5G高并发、低延迟、实时决策的基础上,我们大胆预测算法自动化的奇点将会来临,越来越多的业务需要算法自动化处理。如何避免算法的错误,以及可能带来公平与公正,谁来决策和监督等等问题,人们将会陷入一个空前激烈的舆论和技术攻防战中。
三
算力——寻求边缘和中心的协调
一套完整的风控系统会用到包括规则计算、流计算、图计算、机器学习、深度学习等在内的多种计算方式。根据麦特卡夫定律,当网络节点越多,价值就越大,同时节点之间的连接数量会成几何倍数上升,5G时代算力的瓶颈将是一大挑战,有人提出通过边缘计算解决这一问题,但对于风控体系来说可能集中式的系统更有优势,可以充分发挥“风控大脑”的作用。
我们能否寻求到效率和性能的平衡点?
同盾正在探索逐步将风控系统“边缘化”的新方案,同盾已经将很多并发量高或者特别占用计算资源的风控系统进行“边缘化”处理,比如将一些内容安全识别部分模型布置到本地服务器;或者将一些交易风险识别系统,在本地机房节点上先做一层过滤,以减少对后端核心风控系统的压力。最终形成“边缘”和“中心”的协同作用。
现在关于5G可能给智能风控体系带来的挑战,很多思考、判断还是比较浅显和主观,甚至一些观点在未来有可能被证明是错误的。尽管我们还不能马上拿出完善的解决方案,但至少先预判风险从何处而来,才能更好的未雨绸缪。现在我们能确定的是,5G肯定能催生出新的生态、新的技术架构、新的商业模式,虽然很难对这个“新”准确定义,但是我们已经听到由远及近的脚步声,随着时间的推进,下一代风控系统会逐渐明朗,同盾作为行业的领军企业,正在多方布局,以积极的姿态迎接新的产业革命。
【作者:丁杨 同盾科技产品总监】
日前,中国信息通信研究院发布《人工智能白皮书(2022 年)》,报告提出:算法、算力和数据被认为是人工智能发展的三驾马车,也是推动人工智能发展的重要基础。
一、在算法层面,新算法不断涌现,超大规模预训练模型等成为近两年最受关注的热点之一
1、预训练模型参数数量、训练数据规模按照 300 倍/年的趋势增长,跨模态预训练大模型日益普遍,已经从早期只学习文本数据,到联合学习文本和图像,再到如今可以处理文本、图像、语音三种模态数据,未来使用更多种图像编码、更多种语言、以及更多类型数据的预训练模型将会涌现。
2、轻量化深度学习技术不断探索,计算效率显著提升。复杂的深度学习模型往往需要消耗大量的存储空间和计算资源,难以在端、边等资源受限情形下应用,具备低内存和低计算量优势的技术成为业界需求。
3、“生成式人工智能”技术不断成熟,未来听、说、读、写等能力将有机结合起来。目前,“生成式人工智能”技术被广泛应用于智能写作、代码生成、有声阅读、新闻播报、语音导航、影像修复等领域,通过机器自动合成文本、语音、图像、视频等正在推动互联网数字内容生产的变革。
4、知识计算成为推动人工智能从感知智能向认知智能转变的重要探索。目前,围绕着知识获取、知识建模、知识管理、知识应用等过程,已经形成了涵盖知识图谱、知识库、图计算等技术,覆盖知识表示、知识计算、知识推理与决策能力的体系,
二、在基础算力层面,单点算力持续提升,算力定制化、多元化成为重要发展趋势;计算技术围绕数据处理、数据存储、数据交互三大能力要素演进升级,类脑芯片、量子计算等方向持续探索 。
三、在数据层面,以深度学习为代表的人工智能技术需要大量的标注数据,这也催生了专门的技术乃至服务,随着面向问题的不断具体化和深入,数据服务走向精细化和定制化;此外,随着知识在人工智能的重要性被广泛提及,对知识集的构建和利用不断增多。
据 IDC 测算,2025年全球数据规模将达到 163ZB,其中 80%-90%是非结构化数据 。数据服务进入深度定制化的阶段。企业需求的数据集从通用简单场景向个性化复杂场景过渡,例如语音识别数据集从普通话向小语种、方言等场景发展,智能对话数据集从简答问答、控制等场景向应用场景、业务问答等方向发展。
近年来,人工智能(AI)发展迅速并日益受到重视,日前中国信息通信研究院发布的《全球人工智能战略与政策观察(2020)》报告指出,截至2020年12月底,全球已有39个国家和地区制定了AI的战略政策、产业规划文件。AI三大核心要素是数据、算力和算法。
图片由“小i机器人”公司提供
数据是AI算法的“饲料”
当今,无时无刻不在产生数据(包括语音、文本、影像等等),AI产业的飞速发展,也萌生了大量垂直领域的数据需求。在AI技术当中,数据相当于AI算法的“饲料”。机器学习中的监督学习和半监督学习都要用标注好的数据进行训练,由此催生了大量数据标注公司,它们将处于未经处理的初级数据,转换为机器可识别信息。只有经过大量的训练,覆盖尽可能多的各种场景才能得到一个良好的模型。目前,数据标注是AI的上游基础产业,以人工标注为主,机器标注为辅。最常见的数据标注类型有五种:属性标注、框选标注、轮廓标注、描点标注、其他标注。AI算法需要通过数据训练不断完善,而数据标注是大部分AI算法得以有效运行的关键环节。
算法是AI的背后“推手”
AI算法是数据驱动型算法,是AI的推动力量。主流的算法主要分为传统的机器学习算法和神经网络算法,目前神经网络算法因为深度学习的快速发展而达到了高潮。南京大学计算机系主任、人工智能学院院长周志华教授认为,今天“AI热潮”的出现主要由于机器学习,尤其是机器学习中的深度学习技术取得了巨大进展,并在大数据和大算力的支持下发挥了巨大的威力。当前最具代表性的深度学习算法模型有深度神经网络(简称DNN)、循环神经网络(简称RNN)、卷积神经网络(简称CNN)。DNN和RNN就是深度学习的基础。DNN内部的神经网络层可以分为三类,输入层、隐藏层和输出层。一般来说第一层是输入层,最后一层是输出层,而中间的层数都是隐藏层。DNN可以理解为有很多隐藏层的神经网络,是非常庞大的系统,训练出来需要很多数据、很强的算力进行支撑。
算力是基础设施
AI算法模型对于算力的巨大需求,推动了今天芯片业的发展。据OpenAI测算,2012年开始,全球AI训练所用的计算量呈现指数增长,平均每3.43个月便会翻一倍,目前计算量已扩大30万倍,远超算力增长速度。在AI技术当中,算力是算法和数据的基础设施,支撑着算法和数据,进而影响着AI的发展,算力的大小代表着对数据处理能力的强弱。算力源于芯片,通过基础软件的有效组织,最终释放到终端应用上,作为算力的关键基础,芯片的性能决定着AI产业的发展。
算法、算力、数据作为AI核心三要素,相互影响,相互支撑,在不同行业中形成了不一样的产业形态。随着算法的创新、算力的增强、数据资源的累积,传统基础设施将借此东风实现智能化升级,并有望推动经济发展全要素的智能化革新。让人类社会从信息化进入智能化。
加快补齐AI芯片短板
从技术架构来看,AI芯片可以分为通用性芯片、半定制化芯片、全定制化芯片和类脑芯片(特点是功耗低、响应速度快)。AI本质上是使用人工神经网络对人脑进行的模拟,替代人们大脑中的生物神经网络。由于每个任务对芯片的要求不同,所以可以使用不同的AI芯片进行训练和推理。
在过去二十年中,处理器性能以每年大约55%的速度提升,内存性能的提升速度每年只有10%左右,存储速度严重滞后于处理器的计算速度。随着AI技术的发展,所需数据量变得越来越大,计算量越来越多,“内存墙”(内存性能严重限制CPU性能发挥的现象)的问题越来越严重。因此,存算一体(将部分或全部的计算移到存储中,计算单元和存储单元集成在同一个芯片,在存储单元内完成运算),有望成为解决芯片性能瓶颈及提升效能比的有效技术手段。
目前,核心算力中芯片通用的GPU占主导地位。IDC的研究指出,2020年,中国的GPU服务器占据95%左右的市场份额,是数据中心AI加速方案的首选。但IDC也做出预测,到2024年,其他类型加速芯片的市场份额将快速发展,AI芯片市场呈现多元化发展趋势。近年来,我国AI虽然取得了不少的突破和进展,比如“小i机器人”公司主导了全球第一个AI情感计算的国际标准,并在国际上具备一定的竞争力,但AI芯片对外依赖较大,并缺乏AI框架技术支撑。
未来人们对科技的依赖会与日俱增,AI也将会成为大国竞争的焦点。为摆脱我国AI的短板,有专家表示AI芯片方面我国可以借鉴开源软件的成功经验,降低创新门槛,提高企业自主能力,发展国产开源芯片;算法框架方面则可通过开源形成广泛的应用生态,广泛支持不同类型的AI芯片、硬件设备、应用等。(来源:科普时报)
关键词:
InfiniBand,就是数据中心里的一项关键技术,地位极为重要。
近日,有媒体发现微信正在灰度测试“小绿书“板块,在“看一看”页面中
每当一个新的功能出现,必然会伴随着不同的声音,也代表着不同类型人群
因为加密生态有它自己的发展规律、自己的发展方向。它一定是先把自己的
深兰与韩国EVERYBOT集团签署服务机器人出口订单。